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Autocatalytic Effect in the Processes of Metal Oxide Reduction. 
I. Kinetic Model of the Reduction 
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Kinetic analysis of a model of the consecutive autocatalytic reaction has been carried out and the 
results of this analysis have been applied to the description of reduction of transition metal oxides. The 
proposed model is compared with the consecutive noncatalyzed reaction and the consecutive reaction 
in which the second step is limited by the nucleation process. It is shown that different mechanisms 
of the reduction can be distinguished on the kinetic bases. Q 1991 Academic Press, Inc. 

1. Introduction 

Processes of metal oxide reduction by 
gaseous reductants have been extensively 
studied due to both their practical applica- 
tions and their importance in the develope- 
ment of the theory of solid state reactions. 
Kinetics of many heterogenous reactions 
have been described by Delmon (1) and Bar- 
ret (2). A comprehensive review of the re- 
search on the reduction of transition metal 
oxides has been given by Haber (3). 
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The majority of the authors have ob- 
served a sigmoidal change in the degree of 
reduction, (Y, with time, which indicates that 
the rate of reduction versus t or (Y goes 
through a maximum. This type of kinetics is 
usually explained by accepting growth of 
nuclei of a solid reaction product as a rate- 
limiting step. The acceleration of the reac- 
tion can be explained alternatively by an 
autocatalytic effect. This concept was intro- 
duced first in the description of reduction of 
cobalt molybdate by hydrogen (4). Recently 
Sloczynski (5), analyzing the data of Ueno 

2.1. Formulation of a Model of the 
Consecutive Autocatalytic Reduction of 
Metal Oxides 
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et al. (6) on reduction of MOO, by hydrogen, 
has shown that the reaction kinetics may 
also be explained by the autocatalytic effect. 

In the present paper a detailed analysis 
of kinetics of the consecutive autocatalytic 
reaction (CAR) is given; the results of this 
analysis are then applied to the description 
of transition metal oxide reduction. A pro- 
posed model is compared with the consecu- 
tive noncatalyzed reaction (CNR) as well 
as with the consecutive nucleation limited 
reaction (CNUR). In the second part of this 
paper the proposed model of the consecu- 
tive autocatalytic reaction is applied to the 
description of the reduction kinetics of 
MOO,, both unsupported and deposited on 
various supports. 

2. Results and Discussion 

Reduction of a metal oxide to metal or to 
a lower oxide is often a two-step or multistep 
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process. In particular, reduction of transi- 
tion metal oxides yields as a rule intermedi- 
ate products in a sequence of reactions such 
as 

MOO, + Mo,O,, + MOO, 
VP5 -+ v&4, - v*o4 
Fe,O, -+ Fe,O, + Fe0 etc. 

Notwithstanding general recognition of 
these facts, a kinetic description in which 
metal oxide reduction is considered as a 
consecutive reaction has been lacking so 
far. 

The reduction of a metal oxide in a reduc- 
ing atmosphere, e.g., of hydrogen, or of a 
simple hydrocarbon, is an example of a to- 
pochemical reaction of the type: G, f S, = 
G, + S,. A characteristic feature of such 
a reaction is its occurrence at an interface 
separating a solid substrate from the gas 
phase, or from a solid product. If desorption 
of gaseous products of the reduction and 
transport of gaseous reactants to and from 
the reaction interface are fast when com- 
pared to other steps of the process, the total 
reaction rate, measured experimentally, 
may be expressed as Y( pi, T) . S(t). The first 
term denotes the proper reaction rate which 
depends only on pressure of the reductant 
and on temperature. The second term S(t) 
pertains to the size of the reaction interface 
which may change even considerably in the 
course of the reaction, for instance, when 
the growth of nuclei of the solid product is 
a rate-determining step. This case is dis- 
cussed in detail in Section 5. If the nucle- 
ation is fast, grains of the substrate are im- 
mediately covered with a thin reduced layer 
from which crystallization of the reaction 
products is initiated. The reaction interface 
decreases with time proportionally to the 
nth power of the sample mass with y1 = % for 
spherical grains and IZ = f for elongated 
cyliders. The case n = 1 corresponds to 
the reaction involving also the volume of a 
sample, i.e., when the reducing gas dis- 
solves fast in the oxide under reduction. 

FIG. 1. Schematic representation of a substrate grain 
in an advanced stage of reduction. Black circles denote 
the final product C. 

This takes place, for instance, during reduc- 
tion by hydrogen, or by hydrocarbons, 
which yields by dissociative adsorption 
atomic hydrogen that easily penetrates into 
the bulk of the oxide. The above model 
called “the shrinking core model” (7), with 
various additional modifications, has been 
frequently applied to the description of the 
reduction processes (8-10). 

According to this model, at constant tem- 
perature and pressure of a reductant, the 
rate of consumption of the substrate A is 
proportional to the surface of unreacted 
grains, that is to the nth power of the actual 
content of the substrate A in the sample. If 
an intermediate product B is reduced in the 
same way, the rate of its reduction is also 
proportional to the nth power of its content 
in the mixture of the reactants. The situation 
occurring at an advanced stage of reduction 
is shown in Fig. 1. An initial grain of the 
substrate A contains numerous grains of the 
intermediate product B and grains of the 
final product C. 

The autocatalytic action of product C con- 
sists most probably in facilitating a dissocia- 
tive adsorption of the reductant which leads 
to the formation of reactive atomic hydro- 
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gen at the surface. Traces of dispersed 
metal, usually present in a lower oxide 
which is the final product of the reduction, 
may activate hydrogen or hydrocarbons 
used as the reductants. For example, small 
amounts of cobalt were found on reducing 
CoMoO, (II) and traces of molybdenum 
were identified among the products of re- 
duction of CoMoTeO, (22). Catalytic activ- 
ity of metal admixtures, such as platinum, 
palladium, and nickel, activating hydrogen 
in the reduction of transition metal oxides 
was observed by many authors (13-15). 

An obvious condition for occurrence of 
the catalytic effect is the existence of con- 
tacts between grains of the catalyst C and 
the oxide under reduction. Thus, the auto- 
catalytic effect should be particularly pro- 
nounced in the reduction of the intermediate 
product B transforming directly into the final 
product C, which facilitates generation of a 
significant number of the contacts B/C. In 
contrast, crystallites C do not contact the 
substrate A, and hence the active hydrogen 
transfer from C to A is not possible. The 
above considerations lead to the conclusion 
that the first step of the reduction A -+ B is 
a reaction of the order ~15 1 with respect to 
the substrate A, whereas two parallel paths 
can be envisaged for the second step B + 
C: (a) the reaction of the nth order with 
respect to B and (b) the autocatalytic reac- 
tion, the rate of which is proportional to 
contents of B and C in the reaction mixture. 

A detailed analysis of the kinetics of a 
reaction occurring according to the de- 
scribed model is given below. 

2.2. Kinetics of the Consecutive 
Autocatalytic Reaction 

Let us consider the reduction of a metal 
oxide by a gaseous reductant under constant 
pressure and temperature which proceeds 
in two consecutive steps: 

MO, + MO -+A40 (2.1) 
(A) (dY (c)q 

Let us assume that the overall reaction is 
described by the kinetic scheme 

nth order 

(2.2) 

in which the first step of the reaction is of 
the nth order with respect to substrate A, 
whereas the second step is sum of the non- 
catalytic reaction of the nth order and the 
parallel autocatalytic reaction. When the 
contents of the solid reactants in the reac- 
tion mixtures are expressed in mole frac- 
tions, xi, then from Eq. (2.1) 

x,+x,+xc= 1, (2.3) 

and the rates of the reaction steps are 

dx, dxc 
dt= k,x; - - 

dt 

(2.4) 

C-5) 

dxc - = kjx; -t kzx;;x; = k&(K + x;). 
dt 

(2.6) 

Constant K = kilk, gives a ratio of rate con- 
stants of noncatalyzed and autocatalyzed 
reactions. 

The assumption that the autocatalytic re- 
action is accompanied by the noncatalytic 
reaction follows from the physical mecha- 
nism of the process, described in Section 
2.1, and it is also necessary for construction 
of the kinetic model. Since the rate of the 
autocatalytic reaction is proportional to xc, 
which at the onset of the reduction is zero, 
the reaction B -+ C may start only when a 
certain amount of the product C has been 
formed in a noncatalyzed reaction. Another 
possibility of starting up the autocatalytic 
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reaction consists in forming a certain 
amount of the product C in the reaction sys- 
tem, e.g., by an appropriate pretreatment 
of the substrate A, or by addition of the 
autocatalyst C to the system. Hence, de- 
pending on the initial conditions, the quan- 
tity K can be interpreted either as a ratio of 
the rate constants 3/k, or as an initial con- 
tent of the autocatalyst C in the mixture of 
the reactants. 

The autocatalytic character of the second 
step and hence the proportionality of its rate 
to the content xc gives rise to a specific hin- 
drance of the reduction rate at the beginning 
of the reaction. Only when the amount of 
the autocatalyst C is sufficiently large does 
an abrupt acceleration of the process begin. 
Since the increase in xc is limited and x, 
decreases to zero after having reached its 
maximum value, the rate of reduction pas- 
ses through a maximum and then decreases 
to zero. 

As shown by Sloczynski (5) when n = 1, 
Eqs. (2.4) and (2.6) can be solved analyti- 
cally. The solutions, fulfilling the initial con- 
ditions 

xA = 1; x, = xc = 0 fort = 0, (2.7) 

have the form 

X A=e 
-k,t (2.8) 

x, = 

eh 

Qxa + & - y Ylnx + ki Fi& 

--K 

i=l 
i#a 

(2.9) 

when a is a natural number or 

x, = 
ekx 

. m - K (2.10) 

Qx’ + & + kx Fi& 
i=l 

when a is not a natural number. Constant Q 
is in both cases given by 

Q = f - & - ki Fik, (2.11) 
i=l 
iia 

where 

k’ 
Fik = -’ 

i!(a - i)’ 
a = (1 + K)k; k = 2; 

1 

(2.12) 

and x is an operational variable related to 
time: 

x = epklf. (2.13) 

Concentration x, can be found from Eq. 
(2.3). From the preceding equations, x+ 0, 
x, + 0, xc + 1 when t + m. 

When 0 < n < 1, the solution of Eq. (2.4), 
combined with conditions (2.7), is given by 

xA = [l - (1 - n)k,t]“(‘-“I, (2.14) 

whereas the solution of Eq. (2.6) probably 
cannot be expressed by elementary func- 
tions. A numeric solution of the latter equa- 
tion is given later in this work. 

A significant difference in integrating the 
above equation for n = 1 and 0 < n < 1 
should be stressed at this point. In the first 
case, x, decreases asymptotically to zero 
when t + ~0, which allows the use of the 
operational variable x = e -k,f as the repre- 
sentation of time. This is not possible for 0 
< n < 1 since, as it follows from Eq. (2.14) 
that x, decreases to zero after a finite time 
t = l/(1 - n)k,. 

The case n = 1 has a fundamental signifi- 
cance for the full discussion of the kinetics 
of Reaction (2.2), since its analytical solu- 
tion is known. A discussion of this problem 
presented below is based on the assumption 
that the kinetics of the reaction is dominated 
by its consecutive and autocatalytic charac- 
ter, whereas small changes of the reaction 
order at a given step are of secondary impor- 
tance. The comparison carried out below for 
n = l,n = $,andn = ihasshownthata 
qualitative picture of Reaction (2.2) is the 
same for all the cases and that the change 



in the order brings about small quantitative 
differences in the form of the function (Rl 
R,) (4. 
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- = xrdF‘,rdF = &dFordF = RdE’ dF 
dt dx dx dcr dt da’ 

(3.3) 

2.3. Application of the Model of the 
Consecutive Autocatalytic Reaction to 
Reduction of Transition Metal Oxides 

Full discussion of this question, based on 
the solutions of Eqs. (2.4) and (2.6) for n = 
1, is presented below. In the final part of this 
section, a comparison of selected kinetic 
characteristics, obtained from the solutions 
forn = 1,n = $,andn = &,isgivenfora 
representative range of k and K. 

Eqs. (2.10) and (2.8) combined with rela- 
tion (2.3) provide for a full kinetic analysis 
of the autocatalytic reaction. However, in 
order to verify experimentally the proposed 
model or to determine the rate constants 
from experimental data, the contents of all 
the solid reactants should be measured as a 
function of time. This is a difficult experi- 
mental task and usually studies on the re- 
duction of metal oxides involve determina- 
tion of the degree of reduction CY (by 
following the loss of oxygen from the sam- 
ple) as a function of time, or determination 
of the reduction rate R = daldt as a function 
of time or of the reduction degree CL 

From Eq. (2.1), the degree of reduction 
may be given by 

Cl!= YXB + (P - 4)x, = I, + x 
P-4 aB 0 (3.1) 

where 

pJ-9 
Y . 

(3.2) 

It is evident that y < p - q and, hence, 6 > 
1. 

In the following considerations, measur- 
able functions F, such as x, , xc, or R, de- 
scribing the reaction are used. The following 
formulae should be used for conversion of 
different variables: 

Equation (2.4) gives 

xl =d”= -kx 
dt 1 . 

Taking into account this result and intro- 
ducing F = xc into the first of Eqs. (3.3), 
one obtains 

dxc 1 dx, 
dx= 

--- 
k,x dt ’ 

(3.3b) 

which combined with (2.6) gives finally 

dxc 
-zz 

dx 
-kXB(K + Xc). (3.4) 

The relationships between the derivatives 
of x, and xc may be obtained by differentiat- 
ing Eqs. (2.3) and (3.1): 

2+!!$ -1, !--+LgL~l 

(3.5) 

dx, dx, dcu+dcu= -A- 
cd’ 

f&%+2= 1. 

(3.6) 

From the preceding equations the deriva- 
tives can be calculated, e.g., 

(3.7) 

dxc -= 
da (3.8) 

which give slopes of the curves .~~(a) and 
xcb> * 

The derivative LY’, important in further 
discussion, may be determined from rela- 
tionships (3.5) by eliminating dx,ldx. Then 

(y’ = 1 - (6 - 1)% 1 , (3.9) 
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and for the CAR model (Y’ is, from relation 
(3.4), given by 

I- a! -- 
x + (6 - ;k’B(K + Xc). (3.10) 

We can now calculate the rate of reduction: 

Taking into account Eq. (2~.5) and introduc- 
ing the variable x, a general expression for 
a two-step reaction can be obtained 

I 
. (3.12) 

At the initial moment, t = 0, the rate of 
formation of C is zero, i.e., dx,ldt = 0, and 
from Eq. (3.3b) dx,ldx = 0. 

The same result may also be obtained by 
direct differentiation of Eq. (2.9) or (2.10). 
The initial rate of reduction is then 

R, = ;k, (3.13) 

and a relative change of the reduction rate 
is 

l-(8-1)%. 
I 

(3.14) 

For the consecutive autocatalytic reaction 
with Eq. (3.4) being taken into account, Eq. 
(3.14) becomes 

R 
- = X + (6 - l)kx,(K + X). (3.15) 
Ro 

In this equation, the right side depends only 
on x and the parameters of the function in- 
clude only dimensionless quantities: 6, char- 
acteristic of the oxide reduced, as well as k 
and K, which are ratios of the rate constants 
for respective steps of the reaction. 

To simplify the calculations in further dis- 
cussions, the operational variable x is used 
as an independent variable. However, it 
should be borne in mind that if the kinetic 

quantities, characteristic of a given reac- 
tion, are to have physical meaning they 
should be given as a function of the degree 
of reduction (Y, or oft. In the authors’ opin- 
ion, the most recommended way to describe 
the consecutive reaction is to plot the R/R, 
values as a function of CY. Such plots provide 
information on changes of the reaction rate 
in the course of the reaction. They have an 
additional advantage of being universal in a 
sense that they do not depend on the abso- 
lute values of the rate constants of respec- 
tive steps of the consecutive reaction, but 
on their relative contributions. In order to 
show how the rate of reduction changes in 
the course of the reaction a derivative is 
calculated: 

1 dR -- 
R, dx 

= 1 + (6 - l)k 

Considering Eq. (3.4) and the first of Eqs. 
(3.5), one obtains 

1 dR -- = 
R, dx 

1 + (6 - l)k(K + xc) 

C 
EXB(K f ‘xc - X8) - 1 . 1 (3.16) 

Dividing this derivative by CY’, the derivative 
(l/Ro)(dRlda) is obtained according to Eq. 
(3.3). Based on the solution of Eq. (2.6) and 
relation (2.3) it can be stated that the right 
side of Eq. (3.16) is a function of only the 
variable x. The complex character of this 
relationship does not allow, however, look- 
ing for extrema of the function R/R, by solv- 
ing the equation dRldx = 0 and discussing 
generally the properties of this function. The 
extrema of the function R/R, may be, how- 
ever, evidenced by making use of the limit 
values of the derivatives dRldx or dRlda for 
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i.e., the values at the beginning and the end 
of the reaction. 

A limit for t -+ 0 is easily found as: 

lim -!-dR = 1 - (6 - l)kK. 
x--t1 Ro dx 

For Eq. (3.10) the limit value of the deriva- 
tive is 

and finally 

lima’ = - f 
x---l 

hfg = 6[(6 - l)kK - 11. 

0 

To calculate a limit for x + 0, one should 
investigate the behavior of the fraction 
“B/x, the numerator and denominator of 
which both approach zero. Using L’Hos- 
pital’s rule we get 

lim xe = lim 
l-x-xc 

x-0 x X-70 X 
= ++I-$ - 1. 

To calculate a limit for the derivative dx,l 
dx we make use of expression (2. lo), writing 
it in the form 

ekr 
X, = - - K, 

M 

where 

M = Qxa + & + kC, Fipi. 
i=l 

After differentiating, 

dxc kMeh - Mreh -= 
dx M2 

k k2 
kQxa+.----- 

l+K a-l 
aQx’-’ 

+ k2f Fi$ - k2 iF,p’-‘. 
i=l i=2 

Let us consider two cases: 
(1”) If a < 1, then the term containing xa-’ 

goes to infinity, and the remaining terms are 

constant or go to zero. Then 

limdx,= - 
m 

xB 

x+o dx 
and lim- = m. 

x+0 x 

(2”) If a > 1, then all the terms containing 
powers of x go to zero and 

h;z = (1 + K)2 
k k2 

- - 
1 + K k(1 + K) - 1 1 

k(1 + K) 
=- 

and 

k(1 + K) - 1 

lim3 = 1 
x--to x k(1 + K) - 1’ 

When a = 1, when using Eq. (2.9) for xc and 
performing analogous calculations, it can be 
shown that x,/x --f co. 

The derivative of the rate of reduction can 
be hence written as 

limi!l!!!! 
r--to R, dx 

i 

co ifk(1 -t- K) 5 1 
= 6(1 + K)k - 1 ifk(l + K)> 1.. 

(1 +K)k- 1 

The limb-values of the derivative of CY’ can 
be calculated in a similar way, and then the 
derivative of the rate of reduction with re- 
spect to the degree of reduction CY can be 
obtained. Results of these calculations for 
the rate of reduction as well as other kinetic 
characteristics of the consecutive autocata- 
lytic reaction are listed in Table I. 

Using the limit values of the derivative (11 
R,)(dRldcu) the presence of extrema in the 
function RIR, can be discussed. As seen in 
Table I, for cy + 1, the values of the deriva- 
tive are always negative, whereas at the be- 
ginning of the reaction ((u + 0) the sign of 
the derivative can change depending on the 
values of constants k and K: 

1 

limldn = 

<O ifkK<---- 
6-I 

x--to R, da 1 
(3.17) 

>O ifkK>---- 
6 - 1’ 
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c- 3 3 

VI A VI A 

272 P G 

c + + + 
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In the first case, the derivative is negative at 
the limits of the range ae(O, 1). This implies 
that dRldol is either negative in the whole 
range (0, 1) or changes its sign at least twice, 
i.e., has at least two zero values in the range. 
The form of expression (3.16) does not ex- 
clude either of the two possibilities. Thus, 
it can be concluded that for kK < l/(6 - l), 
the function R/R,, has two extrema or that Rl 
R, decreases monotonically. Physical sense 
demands a minimum appearing first, fol- 
lowed by a maximum. When kK > l/(6 - 1) 
the derivative of RIR, in the range (0, 1) 
goes from positive to negative values, which 
corresponds to a maximum in the function 
RJR,. 

It follows from the above discussion that 
three shapes of the RIR, vs (Y curves can be 
distinguished: (1) curves with a minimum 
and a maximum whereby the position of the 
minimum corresponds to a lower value of CY 
when compared with position of the maxi- 
mum, (2) curves with only a maximum, (3) 
curves with R/R, decreasing monotonically. 

Computer simulation of the function R/R,, 
illustrates the above conclusions. Figure 2 
shows plots of R/R,, xB, and xc for the re- 
duction with 6 = 4 (e.g., MOO, --+ Mo,O,, 
+ MOO,) and for a number of sets of values 
for k and K. Three types of the curves, in 
keeping with criterion (3.17), can be clearly 
seen. The figure also demonstrates that the 
limit values of the slopes in the curves (Rl 
R,,(a), x~(QI), and xc(a) are in good 
agreement with the results given in Table I. 

Finally it should be verified whether the 
above relationships are valid also for 0 < y1 
< 1, i.e., whether classification of the (Rl 
R,,)(a) curves found for IZ = 1 is an immanent 
property of the CAR model, or whether it 
depends on the orders of the respective 
steps of the reaction. 

Since, Eq. (2.6) cannot be solved analyti- 
cally for y1 < 1, numerical calculations have 
been limited to two cases: IZ = f (spherical 
grains) and y1 = 2 (elongated cylindrical 
grains). Solutions of Eq. (2.6), for given val- 

ues of k and K, have been found using a 
modified Runge-Kutta method with a vari- 
able integration step (16). Results of the cal- 
culations are shown in Fig. 3 in the form 
of plots RIR, vs a. As one can see, the 
classification of the (R/R,)(a) curves in three 
categories is valid in the range (0.1, 10) of k 
and K, i.e., in the range in which the contri- 
butions of the respective steps of the reac- 
tion change a hundred times. Quantitative 
differences, when compared with the solu- 
tions for n = 1, consist of shifts of the ex- 
trema of the function (R/R,,)(a), and in the 
changes in their magnitude. For n < 1, the 
simple criterion (3.17) is no longer valid and 
attempts at finding a relationship determin- 
ing limits of the classification of the (Rl 
R,)(a) curves have been unsuccessful. 

2.4. Comparison of the Noncatalyzed 
Consecutive Reaction with the 
Consecutive Autocatalytic Reaction 

Let us now analyze similarities and differ- 
ences between the well known noncatalyzed 
consecutive reaction proceeding according 
to the scheme 

I order I order 
A-B- c (4.1) 

and the consecutive reaction with an auto- 
catalytic step. 

Kinetic analysis of Reaction (4.1) is given 
in textbooks of chemical kinetics and physi- 
cal chemistry. The solutions are usually 
given in the form of relationships xB(t) and 
x,-(t), which can be easily transformed by 
replacing time with the operational variable 
X, 

(4.2) 

where k = k,lk,. The factor (Y’ from Eq. 
(3.3) is in this case 
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FIG. 3. Comparison of the curves (R/R&a) of the 
CAR model for various values of n (6 = 4). 

(y’ xz Sk - 1 - k(S - 1)~~~’ 
6(1-k) ’ (4.4) 

Using Eq . (3 _ 14)) one can calculate a relative 
change in the rate of the reaction 

R 
R,- - &[(l - kS)x 

+ k(S - 1).X? (4.5) 

Differentiating with respect to x and multi- 
plying the result by l/a’, one obtains 

1 dR -_ = 
R, da 

-s (6 - l)k2xk-’ + 1 - Sk 
(S - l)kxk-’ + 1 - Sk’ 

(4.6) 

For the reaction considered, the presence 
of extrema in the function R/R, can be di- 
rectly established. It can be easily noted that 
the derivative (4.6) has one zero 

(4.7) 

which may assume the following positions 
depending on k 

x0: indefinite x0 > 1 O<X,<l 

It can be seen that the solution having physi- 
cal sense exists only for k > l/(6 - 1) and 
then the function R/R,, has a maximum. 
When k < l/(6 - l), the relative rate R/R, 
decreases monotonically with the increase 
in (Y. The same conclusions can be reached 
when one uses the limit values of the deriva- 
tive of R/R,, as shown for the consecutive 
autocatalytic reaction. Using data from Ta- 
ble I it can be concluded that at the end of 
the reaction (CX = 1) the derivative of R/R, 
is always negative, whereas at the beginning 
((Y = 0) its sign depends on the value of k. 
When k > l/(6 - l), the derivative is posi- 
tive and, hence, a maximum in the relative 



rate RIR, appears. In contrast, for k < l/(6 
- 1) the derivative is negative in the entire 
range a~(0, 1) and the function R/R,, de- 
creases. 

Using Eqs. (4.2), (4.3), and (4.4), deriva- 
tives, i.e., slopes of the curves xB(a) and 
x,(c-u), can be calculated: 

dx, 1 - kxk-’ .3 

-= 
da -%k - 1 - k(6 - I).&’ (4.8) 2 

.1 

dxc 1 - kxk-’ 
- = ‘kak - 1 _ k@ _ 1)-&l’ (4.9) da 

The limit values of these derivatives are 
given also in Table I. 
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Figure 4 shows RIR, , x, , and xc as a func- 
tion of the degree of reduction for 6 = 4. 
Two groups of the (R/R&a) curves can be 
seen, one group with a maximum, and the 
other decreasing monotonically. It can be 
easily verified that the limit slopes of the 
curves ~~(a) and xc(a) correspond to the 
values given in Table I. 

The above considerations indicate that in 
I  ,  I  I  ,  

M 
,  ,  

.I .2 J .4 .5 .6 .J .8 .g 1.0 

the case of the noncatalyzed consecutive 4.0 r DEGREE OF REDUCTION 

reaction, the rate of reduction may either 
decrease monotonically with the degree of 
reduction or go through a maximum. If, on 
the other hand the reaction proceeds ac- 
cording to the CAR model its rate may de- 
crease monotonically, go through a maxi- 
mum, or exhibit both a minimum and a 
maximum in the curve (R/R&a+. Thus, the 
two models can be distinguished kinetically. 
In order to decide between the models, the 
experimental data could be fitted to the re- 
spective equations describing the relation- 
ship (R/Ro)(a> for the two cases (Eq. (3.15) 

DEGREE OF REDUCTION 

or (4.5)). For a limited number of experi- FIG. 4. Computer simulation of the kinetic curves 
mental results, charged with inevitable ex- for the CNR model (6 = 4). Numbers correspond to 

perimental errors, however, this procedure following k values: 1, k = 0.1; 2, k = 0.5; 3, k = 0.8; 

does not always lead to definite answers. In 
4, k = 1.5; 5, k = 2.0; 6, k = 5.0; 7, k = 10.0. 

the authors’ opinion a proper criterion for 
distinguishing the two models is provided steps of the reaction to the total rate of the 
by changes in the shape of the (R/R,)(a) reduction are varied. Experiments with var- 
curves when contributions of the respective ious reductants and with the oxide under 
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study deposited on various supports should d% 
give different values of the rate constants of - = mk$“(l - cx)lln(l - Q)[~~“~ (5.2a) 

dt 
the two seps of the reaction and, hence, 
their contributions to the rate of reduction or introducing mkgm = k2 and h = 1 - 

should be different. Changes in shape of the l/m, 

curves (R/R,)(a) in the above experiments da 
will point out the actual model of the re- A = k,(l - a)lln(l - a)l”. 

dt 
(5.3) 

duction. 
To apply Eq. (5.3) to the second step of the 

2.5. Autocatalysis and Nucleation reaction (B -+ C), contents of the reactants 

As shown in the previous sections in the 
must be substituted for the degree of conver- 

course of the consecutive catalytic reaction 
sion I+. Since the degree of conversion is 

one observes the hindering of the reduction 
calculated only for the second step, this step 

rate at the beginning of the reaction and the 
should be treated as an independent reaction 

abrupt acceleration of the process, after a 
and, hence, one must assume that xB + xc 

sufficient amount of the autocatalyst C has 
= 1 - x = constant. We can then write 

been formed. A similar reaction course can xc xc 
be expected when the second stage is limited %z=------= 

xB + xC 1-X 
(5.3a) 

by nucleation of the product C. In this sec- 
tion in order to decide between these two and 
possibilities the kinetics of the two reactions 
is compared. 

da A=----- 1 dxc 

Let us analyze a reaction proceeding ac- dt 1 - x dt ’ 

cording to the scheme: Introducing the above relationship to Eq. 

~ I ordz B nucleation c 
(5.3) and substituting x for time,‘one obtains 

(5.1) an equation which determines changes in 
the content of the product C in the course 

According to the Avrami-Erofeev (2) equa- of the reaction given by scheme (5.1). This 

tion, which describes kinetics of the reac- equation is analogous to expression (2.6) for 

tion for which growth of nuclei is a rate- the CAR model, 

limiting step, the conversion degree after 
time t is 

dxc 
dx 

(yc = 1 - e-k&‘, (5.2) 

where kN is the rate constant of nucleation 

= -k+(l - &--iln(l -e-i’*, 

and parameter m depends on the mechanism (5.4) 

of the nucleation process. Constant k, de- where k = k,lk,. The kinetics of the first 
pends on temperature, the pressure of the step of reaction is described by Eq. (2.4) 
reductant, and the number of nucleation and changes of xB may be calculated from 
sites. If nucleation involves only the sur- relationship (2.3). 
face, the number of the sites is proportional For h = 0, the Avrami-Erofeev equation 
to the specific surface area of the oxide reduces to the first-order equation and ex- 
which is reduced. After differentiation and pression (5.4) becomes identical with the 
elimination of time from the right side of the kinetic equation in the CNR model. It ap- 
eauation we obtain pears that the solution of Eq. (5.4) cannot 
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be expressed in terms of elementary func- 
tions. A simple numeric solution based on 
an approximate analytical equation can be, 
however, proposed. Introducing 

XC 
u==, 

Eq. (5.4) becomes 

(5.5) 

du -- 
dx 

cf = -ke(l - u)/ln(l - z4)lh. 

(5.6) 
Neglecting u on the left side, one obtains 
an equation with separated variables which, 
after integration, gives 

xc = (1 - x)(1 - ePP), (5.7) 

where 

p = [In X-k(l-h)]lwh) (5.8) 

Relationship (5.7), for small x, gives 

X c = 1 - eMp, 

which is the limiting solution of Eq. (5.4) for 
x+ 1. 

The numerical solution is based on the 
relationship 

xc = f- (1 - x)(1 - e-‘) (5.9) 

dxc ~ = -f. (kJ+q”e-v - e-9 + 1). 
dx 

(5.10) 

The factorffor a given x can be found from 
the condition 

f * (k+cphr” - e-p + 1) 

-k~(l-fqln(l-fqh=O, 

(5.11) 

assuming thatfis constant in the near vicin- 
ity of x. In reality, f is a function of x which 
can be defined only as a set of numerical 
values obtained from condition (5.11). The 
calculations performed for a number of val- 

ues of k and for various h have shown that 
values offlie in the range (0.4, 1) andf+ 1 
when x + 0. 

Despite the lack of an analytical form for 
the solution of Eq. (5.4), one can discuss the 
shape of the function R/R,, on the basis of 
the limit values of the derivative (l/R,)(dR/ 
da), as was the case for the CNR and CAR 
models. Substituting (5.4) into Eq. (3.12), 
one obtains 

and after differentiating, 

1 dR 
-=l+(S-l)k[(l+&) 

R, dx 

iln(l -&)ih+h(%+&) 

lln(l - -$-)I’-‘I]. (5.13) 

The limit values of the derivative dx,ldx are 
necessary for further calculations. Its value 
is obviously zero at the beginning of the 
reaction. In order to calculate the limit for 
(Y + 1 (x -+ 0), one can make use of the 
asymptotic solution (5.10). Assuming that 
limf = 1, one obtains 
x+1 

h-h-%= -1. (5.14) 

The limit values (Y’ can be now easily ob- 
tained from Eq. (3.9) and limits of the deriv- 
atives dRlda, dx,lda, and dx,lda can be 
calculated. The results of these calculations 
are given in Table I. 

It should be stressed at this point that 
because of the specific form of the ex- 
pression 

k(1 - x)cphe-q (*) 
x 
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FIG. 5. Computer simulation of the kinetic curves for the CNUR model (6 = 4). Numbers correspond 
to following k values: 1, k = 0.1; 2, k = 0.5; 3, k = 1.0; 4, k = 2.0; 5, k = 5.0; 6, k = 10.0. 

the limit values are sometimes attained only then does it begin to diminish to zero. Thus, 
in the close vicinity of 1. Generally, expres- when the degree of reduction attained in 
sion (*) goes through a maximum and, for experiments is not sufficiently close to 1, 
small values of k, increases strongly with x dx,ldx appears to go to --oo when a -+ 1. 
decreasing down to (Y close to 1, and only As a consequence, apparent limit values of 
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the other kinetic quantities are obtained. 
They are given in brackets in Table I. These 
apparent values can be observed in the plots 
of x,&a) and x&(w) shown in Fig. 4. 

As to the form of the function (R/R,)(a) it 
should be noted that in contrast to the CNR 
and CAR models the sign of the derivative 
dRlda in the CNUR model is the same at 
the onset and at the end of the reaction, 
irrespective of the values of parameters k 
and h. This implies that the (RIRJ(a) curve 
either decreases continuously or goes 
through a minimum and a maximum. Al- 
though the first possibility cannot be ex- 
cluded a priori, a monotonically decreasing 
shape has not been obtained in the computer 
calculations performed for 0.1 5 k 5 10 and 
for various h. This seems to indicate that in 
the CNUR model, in contrast to the CNR 
and CAR models, the curves (RIR,$a) are 
always of the same type, exhibiting a mini- 
mum and a maximum. For large values of k, 
the minimum can be relatively shallow and 
can appear at small values of a. In question- 
able cases, the use of the curve (R/R,)(t) 
should be recommended since this curve 
better describes the initial course of the re- 
action. 

Figure 5 shows examples of the computer 
simulations of the curves (R/R,)(a), ~~(a), 
and xc(a) for h = 4,$, 8, $, which correspond 
to m = 1.5, 2,2.5, 3 in the Avrami-Erofeev 
equation. 

3. Conclusions 

1. Full discussion of the considered mod- 
els of reduction, based on the analytical so- 
lutions of the kinetic equations, is possible 
only for the CNR model, and for the CAR 
model when y1 = 1. Numerical methods and 
computer simulation must be used in the 
CNUR model and CAR for 0 < II < 1. 

2. Presentation of the experimental data 
concerning reduction of metal oxides in the 
form of the (R/R,)(a) curves has a universal 
character since the shape of these curves is 
independent of absolute values of the rate 

constants of the respective reaction steps 
and depends only on their contributions to 
the total reduction process. 

3. The shape of the function (R/R,)(a) is 
different for the different models consid- 
ered. In the CNR model, the rate of reduc- 
tion decreases monotonically with the in- 
creasing (Y or it goes through a maximum. In 
the CAR model, in addition to the two above 
possibilities, a curve with a minimum and 
a maximum is possible. In the case of the 
reduction following the CNUR scheme, the 
(R/R&(a) curves show a minimum and a 
maximum. 

4. Distinction between the discussed 
models is possible on the kinetic way by 
performing series of experiments with var- 
ied contributions from the respective reac- 
tion steps and analyzing the changes in the 
shape of the RJR, curves. 
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